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1. Introduction

The starting point of dependency theory is the notion that certain database states are legal, or

corrct, and others are not. The class of formal statements called dependencies is studied as a

language for the specification of the allowable states. It is therefore of great importance to have a

precise notion of when a database state satisfies a set of dependencies.

When the database state consists of a single relation, dependency theory does provide an ade-

quate notion of satisfaction. Dependencies are restated as first order sentences on a language with a

single predicate letter, and a relation satisfies a set of dependencies if it provides a model for the

associated set of sentences. The generalization of this notion to multi-relation databases has until

recently followed one of two paths. In the first approach, a dependency is said to hold in a particu-

lar relation, so inter-relation dependencies are eliminated by definition. The second approach con-

veniently assumes that the database consists of the set of projections of some universal relation;

questions of satisfaction are dealt with by examining this universal relation.

More recent work [H, V] has pointed out the limitations of these approaches and proposed a

more appealing one. A database state is said to satisfy a set of functional dependencies if there

exists a universal relation I such that I satisfies the dependencies and is a containing instance, that

is, the projections of I on the given relation schemes contain each of the given relations. Any such

TRemrc supported by a Weimann Post-Diocoral ,ellowship and AI.SR i 1 A 8; rem: IBM
Remuah IAboubtory, 500 Coule Rd., San Jose CA 95 t93.
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1 is called a weak instance for the database state; this notion is often called weak satisfaction.

Detailed justification and discussion of this approach can be found in [G,H,VI. It is worth noting

that, when only functional dependencies arc present, a single-relation database is weakly satisfying

precisely when it is satisfying in the standard sense.

Given the useful properties of weak satisfaction [G,MS,Y], it is tempting to generalize it

directly to other kinds of dependencies by saying that a database state satisfies a set of (functional,

mulivalued, join, template, etc.) dependencies if there exists a containing instance for it that

satisfies the dependencies. In this case we shall say that the state is consistent with the dependen-

des.

Our first objection to this proposal is that weak satisfaction now becomes different from stan-

dard satisfaction for single-relation databases. For example, if all the dependencies are total tuple-

generating dependencies (such as multivalued and join dependencies), then any database state

satisfies any set of dependencies. In particular, every single relation can be made into a weak

instance for itself by adding a finite number of tuples to it [MMSBV1].

A second, related, objection is thiat this proposal does not seem to capture the intuitive seman-

tics of tuple-generating dependencies in multi-relation databases either. Consider for example the

fbllowing database.

Example 1:

Ri R2

Student Course Course Room Hour

Jack CS378 CS378 B215 MIO

CS378 B213 WiO
74

.!

. . * - - . * -
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R3

Siudent Room Hour

Jack B215 MIO

and dependencies {SH -*R, RH-"C, C-*-"S IRH}.

The multivalued dependency C -"S I RH is intended to express the fact that a student is

associated with every (r,h) pair such that some course that the student takes meets at room r at

time h. This constraint is intuitively violated in the example, since Jack is not associated with room

B215 on Wednesdays at 10 although he is taking CS378.

An alternative approach to defining satisfaction is through the notion of complete slates, intm-

duced for a different purpose in [MJ. We say that a state is complete if it contains each tuple that

appears in the projections of every weak instance for the state. The state in Example 1 is not corn-

plete, because every weak instance for it contains the sub-tuple <Jack,B213,W1O>, which does not

appear in R3. When only tuple-generating dependencies are given, completeness coincides with the

standard notion of satisfaction on single-relation databases.

An objection to the completeness criterion is that it seems unnatural for equality-generating

dependencies such as functional dependencies. Consider the following example

Liple 2:

RI R2

Student Course Course Room Hour

Accosrion FOr
Jack CS378 CS378 B215 MIO N .......

"- By.
Distribution/

Availability Codes
- Avail and/or

Dist~ Special

. ... n
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R3

Student Room Hour

John B320 F12

with the only dependency C'-*RH.

This is not a complete state, since the sub-tuple (Jack,B215,MlO> will be forced by C-RH

to appear in every weak instance, but it does not appear in R3. However, it is hard to argue that

this state violates the C -. RH dependency, which simply requires that each course be associated

with a unique room and time.

In sum, we have described two notions of dependency satisfaction, consistency and complete-

am Consistency is the natural generalization of weak satisfaction and seems appropriate when only

equality-generating dependencies are given, but disagrees with the standard notion in the presence

of tuple-generating dependencies. Completeness is based on the intuitive semantics of tuple-

generating dependencies but appears unnatural for equality-generating dependencies. It is our

thesis that neither approach is the correct one, but rather that they correspond to different policies

on constraint enforcement, and each one is appropriate in different circumstances.

After introducing definitions and notation in Section 2, Section 3 presents the notions of con-

sistency and completeness. We show how to construct for a database state p two sets of first order

sentences, C, and K., such that p is consistent with the given dependencies if and only if CP is

finitely satisfiable and p is complete with respect to the given dependencies if and only if KP is

finitely satisfiable. In Section 4, we characterize consistency and completeness in terms of the chase

of the associated tableaux [MI. When all dependencies are total, our results provide a decision pro-

cedure for testing consistency and completeness of a state. However, we show that testing whether a

state is inconsistent with a typed equality-generating dependency and testing whether a state is

incomplete with respect to a join dependency are both NP-complete problems. Furthermore, the

general problems of testing consistency and completeness under full dependencies are shown to be

complete in exponential time. In Section 5, we study the decision problem for consistency and

completeness when embedded dependencies are present. By relating consistency and completeness

to the well-studied question of dependency implication, we show that both are undecidable in the

general case. Finally. in Section 6 we examine the construction of sets of sentences similar to CP

.:. • (:-4-.*.



and K., but without using a predicate that stands for the universal relation scheme. We show that

this can be done when the database scheme is weakly cover-embedding, a necessary condition for

independence of the database scheme [GY].

Our results deal with untyped relations and dependencies, that is, a value may appear in

different columns of a relation. However, all of the results, except for Theorems 8, 9 and 15, can

be specialized to the typed case.

2. Definitions and Notation

2.1. Relations, database states and tableaux

We fix a finite set of attributes called the universe, U = {A,. . An. Each attribute A, has

an associated infinite set called its domain and denoted dom(A). Since we deal with untyped data-

bases, we shall let all the domains be the same, say the integers. A relation scheme R is a subset of

U. A database scheme R = {R ... . Rk} is a collection of relation schemes such that the union

of the R,'s is U. A tuple defined on relation scheme R is a function that maps each attribute in R

to a value. The value can be either an integer or a variable taken from an infinite set of uninter-

preted symbols. A tuple can be visualized as a row of table where the columns are labeled by the

attributes. A tableau on R is a finite set of tuples defined on R. If t is a tuple on R and X is a

subset of R, t[X] denotes the restriction of t to X. If t(A) is an integer for every A in X, we say

that t is total on X. A relation on R is a tableau on R such that every tuple is total on R. A rela-

tion on U is called a universal relation.

For r a tableau on R and X a subset of R,the projection of r on X is

wx(r) = {tX [ tEr and t is total on X}.

Note that our definition of projection corresponds to what is sometimes called "total projection" in

the literature, so the projection of any tableau on any set of attributes is always a relation. When

R { R 1 .... , R k ), we write wit(r) for (wR,(r),.... , wR(r)>.

A state of a database scheme R is a function p that maps every relation scheme R in R to a

relation on R. We write

p r1 , • ,rk> =<p(RI), • • • p(Rk)>

=]%
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We sciate with each state p of R a tableau T. defined on the universe. T, contains

exactly one tuple for each tuple in each relation of p. The tuple r corresponding to tuple I in

p(R) is constructed by letting r[R]= [R] and filling the rest of r with distinct variables that appear

nowhere else in T.

Exm e 3: Let R=fABBCD,AD), and p is the state below.

p(AR) p(BCD) p(AD)

A B B C D A D

1 2 2 5 8 1 9

1 3 4 6 7

A4 B C D

1 2 b, b2

1 3 b3 b4

bs 2 5 8

i b6 4 6 7

I b7 ba 9

A raluation v for a tableau R is a mapping from the symbols in the tableau into variables

and constants such that v(c)=c for every constant c that appears in T.

2. Depndece

Following [BV1] we use tableaux to represent implicational dependencies. A template depenf-

dncy (td) is a pair d = <T.w>, where T is a ' Icau contab- no constants and w is a tuple con-

Wining no consmnts We say d sfill or total it ", , a--aus in T for every attribute A. Other-

wie, d is sad to be embMed or partial. A relation I stisfies d if for every valuation v such that

M(T 1, tere exim an extension Y' of v to all the symbols of w such that v'(w)Cl. Infbrmaly. a

': 1 ': = ' " ' - "* " ' , : " -. ' " " , ': " '" """" " " "' '* ". -" "- -" " " - "" " " ,-
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template dependency says that if certain tuples appear in 1, then some other tuple must also

appear. Template dependencies are a special case-of the iuple-generafing dependencies (tgd's), where

a set of tuples is allowed instead of the single tuple w. For total dependencies, one can assume

without loss of generality that a single tuple appears on the right hand side JBV1J; thus total tem-

plate dependencies are no less general than total tuple-generating dependencies. Join dependencies

[ABU,Ri are a specia case of total td's. An equality-generating dependency (egd) is a pair

d = (T,(a,a 2)>, where T is a tableau containing no constants, and a1,a2 are variables that appear

in T for some A. A tableau S satisfies an egd d = <T,(a,a 2)> if for every valuation v such that

v(T)CS, v(ai) = v(a2). Functional dependencies are a special case of egds.

Egd's also act like tgd's, since by generating new equalities they generate new tuples. This

action can be simulated by total td's. Becri and Vardi [BV1, BV21 show how to construct, given a

set D of dependencies, a set D of tgd's that has the following properties:

(1) D is obtained from D by replacing each egd by some td's.

(2) D1=5.

(3) Let d be a tgd. If D I= d then D d.

We call D the egd-free version of D.

3. Consistency and Completeness

In this section we define two properties of a database state with respect to a set of dependen-

cies, consistency and completeness, which we consider to be two different aspects of dependency

satisfaction. We characterize these properties in terms of the satisfiability of two first-order theories

associated with the state.

Let us fix a database scheme R={RI . R}. Let WEAK(D,p) be the set of all weak

instances for a database state p under a set of dependencies D. That is, WEAK(D,p) is the set of all

universal relations satisfying D such that their projections contain each relation in p. Say a state p

is consistent with set of dependencies D if WEAK(D,p)* 0 . The completion of a state p, p+, is

defined by

P+ n,.p = nl {,,R(I)},

where the intersection is taken relation-wise. Note that pCp for any p. Say a state p is compicte

with respect to set of dependencies D if p equals its completion, that is, p = p+.

3,, A6 , - .- , , . . , . ..,.-..-;
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Intuitively, a state p is consistent if there is some way of adding tupics to relations of p that

will transform it into the set of projections of some satisfying universal instance. If p is consistent,

then there are many different sets of tuples which can bc added to it to demonstrate its consistency.

However, there arc certain tuples which will have to appear in every such extension of p. If all

these necessary tuples are already in p to begin with, then we say p is complete. Note that the

definition of completeness is based on the egd-free version of D, D. This is done to allow con-

sistency and completeness to be independent notions. While WEAK(D,p) could be empty (for

inconsistent p), WEAK(D,p) is never empty. We will show later that, for consistent states, it does

not matter whether D or D is used.

Several workers [GM,Ni] have advocated the use of first order logic to express dependencies

and other constraints. As we explained in the introduction, their approach does not easily generalize

to dependencies in multi-relation databases. Given a dependency statement such as X- Y in a

database scheme where X and Y may not appear together in one relation scheme, or may appear

in more than one, it is not clear how satisfaction of the dependency .can be formalized as satisfac-

tion of some first order sentence.

The notions of satisfaction proposed above do provide a means of using first order logic to

fornalize dependencies. However, a rather drastic shift in point of view is required. It is no longer

possible to write down a sentence for each dependency and ask whether the database provides a

model for each of these sentences. Consider for example the notion of consistency as satisfaction,

and let di = A -*C, d2 = B--*C, with the database scheme {AB,BC}. Let p(AB) = <00,01> and

p(BC) = <01,12>. It is easy to see that p is consistent with d, and with d2, but it is not consistent

with {d1,d2}.

Our approach is to construct two sets of sentences, Cp and K., for each state p. We will show

that p is consistent exactly when C. is finitely satisfiable and that p is complete exactly when K. is

finitely satisfiable. Thus we reduce both notions of satisfaction to the standard logical notion of

finite satisfiability. Note that in this approach consistency and completeness of a state arc not first

order notions, they are statements about first order theories rather than statements in these theories.

Before constructing the sets of sentences C. and KP, we fix a linear ordering on the elements

of the universe U. We now write U as the sequence <AI ...... A,>. Each relation scheme R in R

may be written as the sequence (A,. A1 >. where ij<ik for j<k.

C, and KP each contain two _ih .Its of sentences, the database scheme axioms and the state

axioms. The scheme axioms depend only on the database scheme R and the set of dependencies D;

* . ..i- .
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the state axioms depend on the state p.

The scheme axioms of both C. and K. include the containing instance axioms. For each

relation scheme R, there is one containing instance axiom that says that every tuple in the R-
relation of the state must be the projection on R of some tuplc of the universal relation. In other

words, the containing instance axioms assert the existence of a containing instance for the state.

Formally, for each relation scheme R = <All ..... Ai,> in R, there is a sentence of the form

V a 3 Y (R (al. a.)* U(yo,a1,y1,a2,...,amYy.))

where a is the sequence aia2, ... .a. and y is the sequence <yo,. ... . ye>, no aj appears in y and

no symbol appears more than once in y. The sequence yj is of length ij+I-(ij +1), where io=O

and i.+t=n +1.

The scheme axioms of C. also include the dependency axioms, which are just the dependen-

cies in D encoded as implicational sentences as described by Fagin [F]. K. also contains depen-

dency axioms, but in this case we use the egd-free version of D, D, rather than D itself.

The state axioms of both CP and KP contain the state p encoded as a set of quantifier-free

sentences. For each tuple <a. .... a.> in p(R), we include the sentence R(a,. ... .a.), where

the a's are constants.

Finally, the state axions of C. include the distinctness axioms, and those of K. include the

completeness axioms. Ilie distinctness axioms are the set of inequalities c*d, where c and d are

distinct constants appearing in p. The completeness axioms contain, for each tuple <a,. a.>

such that each a, appears in p but the tuplc itself does not -ppear in p(R), the sentence

V y(-U(y1,a. ..... amy.))

.0 where y is constructed as in the containing instance axioms. Intuitively, the completeness axioms

say that only tuples appearing in p(R ) can be in the projection of the universal relation on R.

Example 4: We construct C. and K, for the state shown in Example 1. U is the sequence

<S,C,R,H>; R contains the schemes R, = <S,C>, R2 = <C,R,H>, and R 3 = <S,R,H>. ihe

dependencies are the functional dependencies SH-R, RH -C, and the multivalued dependency

C--S IRH.

....... ....... ...... .. . *** .... .**v.,*~
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* Containing Instance Axioms:

V s,c I r~h (R 1(s,c) - U(sxc,r,h))

V e,r,h 3 s(R2(c~r,h)-*U(sxc,r,h))

Y s,r,h 3 c (R 3(s,r,h)-.U(sxx~,h))

e Dependencies:

(V SIC IC2hlrlr2)(U(s,c.rih) U(Sl9 C 2,r2,h1) r, r2)

(Y SIS 2CIC2h~rj)(U(sl,c,r,h)\U(S2,C2 r,h1 ) -4 c C= C,)

(V sis~clrlr2hih2 )XU(s,c,ri,hlOAU(s2,cl~r2.h2) --* U(S2,Cl3r1~h1))

e Egd-free Dependency Axioms:

Of SlS2ClC2C3hih2rlr2)XU(sl,cl~rl,hl)A\U(S,C2,r2.hl)\U(S,C3,r~h2)

-*UU 2,C3,r2,h2)

(V SIS2S3CIC2hih~rlr2 )(U(si,ci,ri.h)\U( 2,C2,r,h)AU(s3,c,r 2,k2)

U4s3,C2,r2,hQ)

(Y sis,.clrir2hlh2XU(si,ci,r,h)AU(S2.Cl~r2.h2) -*U(s 2,Ci,rj,h1))

etc.

e State axioms:

Rijack ,CS 378)

R2(CS378,B215,M 10)

RACS 378,B 213, WIO)

R3(Jack,B215,AI 1)



* Distinctness axioms:

B215wB213

M10 W1O

Jack 0 CS 378

Jack* B 215

etc.

e Completeness axioms:

For R1:

Y r,h -U(CS378,CS378,r,h)

Y r,h 'U(B215,CS378,r,h)

etc.

For R2:

V s -nU(s,CS378,B213,M1O)

V s "1U(s,CS378,B215,WIO)

etc.

For R3:

V c-"U(Jack,c,B213,W1O)

etc.

CP consists of the containing instance axioms, the dependency axioms, the state axioms and

the distinctness axioms. K. consists of the containing instance axioms, the cgd-free dependency

axioms, the state axioms and the completcness axioms.

Before proceeding to our results, we introduce some basic dcfinitions and notation of model

theory. A structure for a language 1, consists of a domain of elements and an interpretation of each

predicate and constant of L. A structure with a finite domain is finite. if M is a structurc with

.- ; ,', '...;: g -.';-,'. -4',' ', ... ;'.' .-.. "-. '''.4,.; :',' ',":'- -".-'.-." ". .,-,". :'-.".''''..
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domain A and P is a k-ary predicate symbol, then M(P)_ Ak is the interpretation of P in M,

and if c is a constant, M(c) E A is the interpretation of c in M.

A structure M for a language L is a model of a set of sentences X if for every a E 1, a is

true in M, written Af = (we assume the reader to be familiar with the notion of truth in a

model). A set of sentences isfinitely satisfiable if it has a finite model.

The next two theorems establish that finite satisfiability of C. and Ko are identical respec-

tively to consistency and completeness of p with respect to D.

Theorem 1: C, is finitely satisfiable if and only if p is consistent with D.

Proof: If p is consistent, it is clear that for every I E WEAK(D,p) the structure M with

M(R) = p(R) and M(U) = I is a finite model of C,. For the converse, let M be a finite model of

CP. For each pair of constants c, d in the language of C, we have M = c~d, so M(c)M(d).

Thus we can assume without loss of generality that constants are interpreted as themselves, i.e.

M(c) = c. It is easy to verify that M(U) is a containing instance for p that satisfies D. That is,

M(U)EWE AK(D,p). so p is consistent with D. 0

Theorem 2: K, is finitely satisfiable if and only if p is complete with respect to D.

Proof: Suppose K, is satisfiable with a finite model M. We claim that K. has a finite model

M' where no two constants have the same interpretation. To construct M', we replace each cle-

ment of the domain of M with many distinct copies of that element. For example, if

<a,b,c)E M(R), then M'(R) would contain tuples <ajb,c>, <al,bl,c2>, <al,b2,c3>, etc. If two

*; constants are interpreted as the same element in M, they would be interpreted as two distinct copies

of that element in M'. Since K, does not have equality in it, M' is still a model of K,. Thus,

without loss of generaity, we can assume that in M' constants are interpreted as themselves, so

M'(U) E WEAK(D,p). By the completeness axioms, ITR() does not contain any tuple constructed

from values appearing in p but not itself appearing in p. Hence, p+ cannot contain any such tuple,

so p is complete.

For the converse, suppose that p is complete. Consider the set S of all tuples t on some rcla-

tion scheme R such that t is constructed from values appearing in p but t is not in p. Since p is

complete, if t is an R-tuple in S, then there is a universal relation 1, E wI;AK(D,p) such that

I witR('a). We use now the direct product construction [t] to produce a universal relation

I E W'AK(Dp) such that if I is an R-tuple from S, then t q_ wR(1). 1 is the direct product X 1,

constructed as follows. Let S = { ... j. The values in I are m-S uneq ccs c = <c I. c>

A e4.
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of constants from p, where we identify the m-sequence (c,c... ,c> with the constant c. Now a

tuple s is in I if and only if the tuple s, which is obtained from s by projecting each in-scquence

on its i-th component, is in It,. It is straightforward to verify that I is a containing instance for p.

Furthermore, since dependencies are preserved under direct product [F], I must satisfy D. The
finite structure M with M(R) = p(R) for each R and M(U) = I is a model of K. 0

4. Testing Satisfaction under Full Dependencies

In this section we show that both consistency and completeness of a state can be tested by

chasing the associated tableau, when embedded dependencies are not present. Thus the upper

bounds on complexity known for chasing tableaux under various special kinds of full dependencies

apply also to testing satisfaction. Throughout this section, D is a set of full dependencies. We start

by defining the chase of a tableau under full dependencies and establishing preliminary results

about chasing with the egd-free version of D.

The chase of a tableau T with respect to a set of dependencies D, denoted by cIIASED(T), is

the result of applying the following two transformation rules exhaustively to T.

Td-rule:

If<S,w> is a td in D, and there exists a valuation v such that v(S)CT, add v(w) to the rows

of T.

Egd-rule:

Suppose <S,(aj,a 2)) is an egd in D, and there exists a valuation v such that v(S)CT, and

v(at),v(a2) are not both constants. If only one of v(al),v(a 2) is a constant, rename all

occurrences of the other one in T to that constant. If both are variables, rename all

occurrences of the higher numbered variable to the lower numbered one.

Given a tableau T, and set of dependencies D, we will write

T = C11ASIFo(Tp)

and

TP = CHASI 5 (TP)

where D is the egd-free version of D.

We need some preliminary results before characterizing consistent states.
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Lemma 1: For each IEWEK(D,*), there is a valuation v such that v(T;).

Proof: By induction on the computation of V. G

Lem 2: For any consistent am p, n o.(,I)) = w.(T;).
IEWPAJADO)

Proof. Let I EWAK(Dp). Let v be the valuation of the previous lemma, v(T* )Q 1. Then

WN(T;); Wx(V(T))r. 13(1

It follows that wt(Tp) ; , wnt(l)}. For the other inclusion, let I be a tuple in the R,-
component of n {ua(J)}. Let v be an injective valuation for T; that maps each variable

IEWum,D)

to a constant not appearing in 1. Since v(TP)EWEAK(D,p), tEwR,(v(T;)). By construction of v,

this implies that t must come from some R,-total tuple of T;, so iEwet(T*). 0

Consistency and completeness of a state can be characterized in terms of the associated

tableau T. as follows.

Theorem 3: The following are equivalent.

(a) p is consistent with D.

(b) T, satisfies D.

Proof:

(a) implies (b): Let I EWEAK(Dp), and let v be the valuation of Lemma 1. Suppose that T; does

not satisfy some dED. d cannot be a td, since in that case a td-rule is applicable to T;. Thus d

must be an egd (S,(al,a2)), and there is a valuation v' such that v'(S)CT; and v'(a1 )Ov'(a 2).

Both v'(al) and v'(a2) must be constants, otherwise an egd-rule is applicable to T;. But now

v(v'(S))C; and v(v'(ai))"v6'(a)), so I does not satisfy D - a contradiction.

(b) implies (a): Let v be an injective valuation for T, that map each variable to a constant not

appearing in p. "lien v(T;) .atisfics D and it is a containing instance for p. Thus

WEAK(D,p)*0. 3

We need two more preliminary results before characterizing complete states.

Lemma 3: For each IEwIIAK(DTp). there is a valuation v such that v(T + )K l.

Proof: By induction on the computation of T + . 0

The next lcmma shows that the completion of a state can be obtained from TP+.

1% %g

N"::



JiA a 4: For any state p, p+ =i(T;).

Proof: Let I(WEAK(Dp). Let v be the valuation of the previous lemma, v(T,+ )CI. Then
,,W.(Tp+ )( C;wR(V(Tp )) C_,,V(M

It fbllows that wg(T,; ) C p+. For the other inclusion, let t be a tuple in the R,-component of p + .

Let v be an injective valuation for T,+ that maps each variable to a constant not appearing in 1.

Since v(T,.)EWEAK(D,p), IEwRYV(Tp+). By construction of v, this implies that i must come

from some RI-total tuple of T,+, so tEwN,(T1'). 3

Theorem 4: The folowing are equivalent.

(a) p is complete with respect to D.

(b) p is complete with respect to .

(c) p = w,(T; )

Proof: The equivalence of (a) and (b) is immediate from the fact that D=D. The

equivalence of (a) and (c) follows directly from Lemma 4. 0l

We have defined completeness and consistency to be independent notions. However, it is

interesting to note that, fir consistent states, the notion of completeness can be simplified as fol-

lows.

Tbeorem 5: For state p consistent with dependencies D, the following are equivalent:

(a) p is complete with respect to D.

(b) p =w(T).
(C) P: = n" .{,,et).

IEWEAK(D))I

Proof:

(b) equivalent to (c): Follows from I .emma 2.

(a) equivalent to (b): By Theorcm 2, p is complete wit ) ut if p = wR(/' ). We claim that

WR(T;) = we(Tp, ) for consistent states. Since p is consistent, by Theorem I. Tp stislies In. fly

property (2) of D, we also have that T; satisfies D. lence, by Iemma 3. thcre is a valuation v

such that v(Tp) CT;. Consequently. wR(TI )C wR(T.). For the Other iIIusi,, ICL I he a

tuple in die R-uicoiipoiici of wut(T;). I.ct Y be a inii ) for 7'p that seiids distin.t con .,ml, to dis.

tinct variables. I.ct T= Y(Tp). and let s be a tuple such that s[Rl"j: v(i) and Ihe ict of s co Nsits

of distinct new variables. We claim that D I<Ts>. Indeed, there is a tuple ti in T, such that
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tJR 1 =t. 'Ilherefore, there is a tuple s, in c1iASrtD(T) such that si[RJ=s[Rj]. By the results in

-BVIJ, it follows that D I<Ts>. But then also D I<T,s>, by property (3) of D. Thus, by the

results in [BVIL, there is a tuple s2 in CIIAsr(T) such that sjRj=s[Ri]. It follows that

tEw(T, ). a

* Corollary 1: The following are equivalent:

(a) p is consistent and complete with respect to D.

(b) T; satisfies D and p = w1(T).

(c) p = n 0! EWEAK(D €)

The next theorem relates consistency and completeness to standard satisfaction for single rela-

dions.

Theorem 6: For R = {U1, p(U) satisfies D if and only if p is consistent and complete with

respect to D.

Proof. (Only if) Let J = p(U) E sAT(D). Since J E WEAK(D,p), p is consistent with D.

We claim also that p = n {wR(/)1. Since p = wR(J), clearly fn {it()} c p.
IEWnAK(Dp) IEwEA.K(D.p)

Furthermore, for every I E WEAK(D,p), J C i, that is, p Q wg(l), so p C_ nf wR(1)}"
IEwM(D.p)

Therefbre p is complete wrt D.

(If) Let p be consistent and complete with respect to D. Then T; satisfies D by Theorem 3,

and p = Wn(Tp) by Theorem 5. Since R = [U} and all dependencies are. total, clearly

wR(T;)= T;', hence p = T; satisfies D. [I

As a consequence of Theorems 3 and 4, the chase is a decision procedure for consistency and

completeness under full dependencies. In the rest of this section we shall give upper and lower

complexity bounds for these problems.

We first give NP-completeness results that follow from Theorem 6.

Theorem 7:

(1) For R= {U}, testing whether a state p is inconsistent with a typed egd or whether it is incom-

plete with respect to a jd is NP-complete.

(2) For R = [U }, testng whether a state p is not complete with respect to a set D of full depen-

dencies is NP-complete.

:i;
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(3) Testing whether a state p is inconsistent with a set D of egd's is NP-complete.

(1) In [MSY] it is shown that testing whether a relation violates a jd is NP-complete, and in

[BV3] it is shown that testing whether a relation violates a typed egd is NP-complete. The

claim now follows by Theorem 6.

(2) The claim follows by the above mentioned NP-completeness results in [BV3, MSYJ and

Theorem 6.

(3) NP-hardness follows from the first claim; we have to show that the problem is in NP. To test

for inconsistency, one constructs T,, and chases it by D. If at any stage the chase require

identifying two constants, then p is inconsistent with D. By [BV3] chasing by cgd's can be

done in nondeterministic polynomial time. 0

We now refer to the general case and prove lower and upper exponential time bounds.

Theorem 8: Testing whether a state p is consistent with a set D of full dependencies is

EXPTIME-complete.

Proof: As observed before, to test for inconsistency, one constructs T. and chases it by D.

If at any stage the chase require identifying two constants, then p is inconsistent with D. Other-

wise, it is consistent. An analysis of the chase in [BV3] shows that it can be done in exponential

time. It remains to show that the problem is EXPTIME-hard. We show it by reduction from the

implication problem for full td's, which was shown in [CLM] to be EXPTIME-complete. That is,

given a set D of full td's and a full td d, we construct in polynomial time a set D' of full depen-

dencies and a state p such that D J=d iff p is inconsistent with D'.

Let U be the relation scheme for the dependencies DUd. Let d be <T,w>, with

T=(wD ... w. }. Without loss of generality assume that there are at least two variables in T.

To test whether D t=d, we chase T by D and see whether w is generated. The idea of the reduc-

tion is to have a state p that "looks like" T and a set D' of dependencies that simulate D and in

addition force identification of two constants if w is generated. In order to do that we need to

mark the tuples in the original state and the tuples that are generated by the chase. The marking is

done by equalities satisfied by the tuples. For that we add new attributes: the database scheme is

R={U'}, where

.. .U'= U.. . . . . . ... ,A .. . . , ,B,/I .. .. ,

N V.
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Let a be a one-to-one valuation that maps the variables in T to constants. p(U') has tuples

u ... , u. that correspond to the tuples wl, .... w. in T in the following way:

(1) u,[UI=cw,),

(2) ui[A] and ui[Al] are the same new constant, and

(3) u has distinct new constants elsewhere.

Note that, since R has a single relation scheme, T, is just p(U').

Letnow(S,v)beafiulltdinD. Weconstructafulltd(S,v')onU'andputitinD'. For

each tuple v, in S we have a tuple v'i in S' defined as follows:

(1) V'[U=w,,,

(2) v'1 has distinct new variables elsewhere.

v' is defined as flows:

(1) vlUI=v,and

(2) v'A,A,....,A.,=v1B,.... B.,=vJB,B,.....B.I

For example, if (S,v) is:

F G H

v: f g h

vl: f g hi

v2: f gi h

v 3 fl 9 g

.4 Then <S',v'> is:

;*' :,, . ' S"*. ' * - . - *. ' - '.* '~ .% ' ,, ,' ,, ,,, -% .o% . . * . . ,. .,- . . .-
I BI RW lll~lll J~i''lYb'* S.' * l a d '* t** *

5
fl

' - 'a ' b e 's
t ,'
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A Al A2  A3  B B! B2  B3  F G H

: b hi b2 b3 b bi b2 b3 f g h

b bi b2 b3 f g hi

**f 9i h

(Dot represent variables with unique occurrenoc%).

In addition we put in D' an egd <T',(aa 2 )>, where a, and a2 are two distinct variables from

T. r, has tupks w,'..... w,wthatcorrespond to w 1.. ,w.,w.

w'1 is defined as folows:

(1) w'1[UJ=w1,

(2) w'i[A) and w',[A, are the same new variable, and

(3) w', has new distinct variables elsewhere.

w is defined as foows:

(1) wlUj=w, and

(2) w' has new distinct variables elsewhere.

For example, if <T,w> is:

F G H

w: f g h

wi: f g hi

w2 f gi h

w fl g g

Then the constructed egd is <T',(ff )> where T' is:
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A B A!  A2 A3  B!  B2 B3  F G H

Y al al .f g hi

*2: a2 a2 f gl h

w: . a . ffig h

f g h

(Doi represents variables with unique occurrences).

To prove that D k d iff p is inconsistent with D' we show that a chase of T by D can be

simulated by a chase of T, by D' and vice versa.

Consider first a chase of T by D. We claim that for any tuple t generated by a td <S,v> in a

chase of T by D, one can generate a tuple t' by the td <S',v'> in a chase of To by D' such that:

(1) t'[Uj=a(t), and

(2) t'Al*t'[AJ] fir 1:i5m.

We leave the verification of this claim to the reader. If D k d, then w is generated by the chase of

T by D. Therefore, a chase of T by D' generates a tuple u such that u[U]=a(w). Let us now

apply the egd <T',(aj,a2)> with a valuation J3 that maps w', to u and w' to u. P agrees with a on

the variables of T, so we are forced to identify a(ai) and a(a2). That means that p is inconsistent

with D'.

Consider now a chase of T by D'. We claim that for any tupic I' generated by a td (S',v'>

in a chase of T. by D', one can generate a tuple t by the td <Sv> in a chase of T by D such

that

(1) t'[U=a(t), and

(2) t'lalJ*tjA,] for ~i~m.

We leave the verification of this claim to the reader. If p is inconsistent with D' then the egd

<T',(a,a)> must be applied with some valuation P. But since w'I[AI= w'i[Ai], w', cannot be

mapped by P to any other tuple but u1. Thus P agrees with a on the variables of T. In particular,

P(w')U]=a(w). That is, w' must be mapped to a tuple u generated by the chase of T. such that

u[U]=a(w). But then w is generated by a chase of T by D, so D Ikd.

To complete the proof we note that the reduction from D and d to p and D' can be done in

polynomial time. 0

.7 .~
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Corolla 2: For R={U}, testing whether a state p is consistent with a set D of full depen-

dencies is EXPTIME-complete. c

The corollary should be contrasted with clause (2) of Theorem 7. While consistency is

EXPTIME-complete even for database schemes with a single relation scheme, for completeness

there is a complexity gap between the case of database schemes with a single relation scheme and

the case of database schemes with two relation schemes.

Theorem 9: Testing whether a state p is complete with respect to a set D of full td's is

EXPTIME-complete.

Proof: To test for incompleteness, one constructs T. and chases it by D. If at any stage a

tuple i is generated such that i[Ri] has no variables and i[Rl] is not in p(R1 ) for some of the rela-

tion schems Ri in the database scheme R, then p is incomplete with respect D. Otherwise, it is

complete. An analysis of the chase in [BV3] shows that it can be done in exponential time. It

remains to show that the problem is EXPTIME-hard. We show it by reduction from the implica-

don problem for full td's which was shown in [CLM] to be EXPTIME-complete. That is, given a

set D of fill td's and a full td d, we construct in polynomial time a set D' of full td's and a state p

such that D 1= d iff p is incomplete with D'.

Let U be the relation scheme for the dependencies DUd. Let d be <T,w>, with

T=w .... , w. }. Without loss of generality assume that w is not in T. To test whether D I=d,

we chase T by D and see whether w is generated. The idea of the reduction is to have a state p

that "looks like" T and a set D' of dependencies that simulate D and in addition generate a "for-

bidden" tuple if w is generated. Unlike the reduction in the proof of Theorem 8, we have to be

careful not to generate "forbidden" tuples too early. For that we add new attributes: the database

scheme is R={R,R21, where R1=UUjA,B,A. . . , A.,} and R2=(C,D}. The new universe is

U'=RIUR 2.

Let a be a one-to-one valuation that map the variables in T to constants. p(R I) has tuples

Ul, ... ,u. that correspond to the tuples wl.  w. in T in the following way:

(1) uJfUJ=a(w),

(2) u(A], ul[B], and u1[All are the same new constant, and

(3) u has distinct constants elsewhere.

p(R2) has a single tuple u0 such that udC] and uo[DI are the same new constant.
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- In Tp, the tuples ul,.... u. are extended with distinct new variables for the attributes C

and D, and u0 is extended with unique variables for all attributes other than C and D. 'rhe idea is

that for every tuple I generated by a chase of Tp, 1[l] and ifD] are variables, so no "forbidden"

tuple is generated until the very last step.

Let now <S,v> be a full td in D. We construct a full td <S',v'> on U' and put it in D'. For

each tuple ve in S we have a tuple v' in S' defined as follows:

(1) v',[U]=vi,

(2) v'IAJ and v'11B] are the same new variable, and

- (3) v'i has distinct new variables elsewhere.

* In addition S' has a tuple v'0 defined as follows:

(1) v'dC] and v'[D] are the same new variable, and

(2) v'0 has distinct new variables elsewhere.

Finally, v' is defined as follows:

*(1) v'[UJ=v,

(2) V'[Ai ..... A.]= v'olAb. ... ,A,],

(3) v'[A] and v'[BJ are the same old variable (any variable from v will do), and

(4) v'ICDI=v'i[CD1.

For example, if<S,v> is:

F G H

v: f g h

yV: f g hi

v2: f gi h

"' fl g h

Then <S',v'> is:

*4

4-S
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A B Al A2 A3 C D F G H

V': f f al a2 a3 ci di f g h

V7al a2 a3 c c J2 g2 h2

VI: a4 a4 .ci d] f g hi

Vy a5 a5 f gI h

v#y a6 a6 . . . . . fl g h

(Dot represents variables with unique occurrences).

In addition we put in D' a full td (T',w'>. T' has tuples W'OW 1
1, .... win' that correspond to

WW . . . WMj.

WO~ is defined as follows:

(1) w'dU = w. and

(2) W0 has new distinct variables elsewhere.

w'1 is defined as follows:

(3) w':[UI=w1,

(4) w', [A ] and w'j [Ai I are the same new variable, and

(5) w', has new distinct variables elsewhere.

Finally, w' is defined as follows:

(1) w'[U]=w,and

(2) w'[A,,Ab,...,A,,C,DI=w'l[A,8,Ai....Am,CDi.

For example, if <T,w> is.

F G H

v: f g h

VI: f g hi

v2: f gi h

v3:fl g hi

Then <T',w'> is:
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A B Ai  A2 A3 D E F G H

W: al a2 al a3 a4 ci di f g h

do, . .. f g h

w!: a) a2 al a3 a4 ci dl f hi

W2: a5 a5 f gl h

W1ja a a6 fJlg h

(Dot represents variables with unique occurrences).

To prove that D 1= d iff p is incomplete with respect to D' we show that a chase of T by D

can be simulated by a chine of T. by D' and vice versa.

Consider first a chase of T by D. We claim that for any tuple t generated by atd <S.v> in a

chase of T by D, one can generate a tuple t'by the td <S',v'> in a chase of T. by D'such that

(1) rIUI=a(,),

(2) 1A1 and IJBl are the m csMant,

(3) 11A I.... tIA.], tICJ and tjDja distinct variables.

We leave the verification of this claim to the reader. If D J= d, then w is generated by the

chase of T by D. Therefore, a chase of T. by D' generates a tuple u such that u[IJ=a(w). Let

us now apply the td <T',w'> in the chase of T. with the valuation 0 that maps w'O to u and maps

w'i to ul. This generates the tuple P(w') with:

(1) P(w'xUJ=a(W), and

(2) IJ(w"A,B,Al.....,A.,C,DI=udAB,A .... ,A.,C,D].

It follows that P(wXR j consists solely of constants and is not in p(R1), since w is not in T. So p

is incomplete with respect to D'.

Consider now a chase of T. by D'. We claim that for any tuple t' generated by a td <S' v'>

in a chase of T. by D', one can generate a tuple i by the td <S,v> in a chase of T by D such

that:

'~. * . .. .. . . .ul ul-u- u,- mu ,' ,S. . . . . .. ,, . .. . - -
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(1) t'(UJ=a(t),

(2) t'[A] and t'[B] are the same constant, and

(3) 1'[A 1.... 1'[A,I, t'[C], and t'[DI are distinct variables.

We leave the verification of this claim to the reader. If p is incomplete with respect D' then the td

<T',w'> must be applied with some valuation .8. But. since w'[A]=w',[A], w'j cannot be

mapped to any other tuple but uj . Thus P necessarily agrees with a on the variables that are in T.

In particular, P(w'[U]=a(w), so Wo must be mapped to a tuple u generated by the chase of T.

such that u[U]=a(w). But then w is generated by a chase of T by D, so D j=d.

To complete the proof we note that the reduction from D and d to p and D' is polynomial.

0

We note that in the proofs of Theorem 8 and 9 we have untyped dependencies in D' even if

the dependencies in D are typed. We believe that the exponential lower bounds for consistency

and completeness hold also for typed dependencies.

5. Testing Satisfaction under Embedded Dependencies

In the previous section, we restricted our attention to fill dependencies in order to obtain

decidability results. In this section we return to arbitrary sets of dependencies. Our main result will

be that both consistency and completeness are undecidable in this general setting. To show this, we

will prove that consistency and completeness are recursively equivalent to certain dependency

implication problems which are known to be undecidable.

The first step is to reduce consistency to the implication problem of egd's by a set of depen-

dencies. Let p be a state and D a set of arbitrary dependencies. Construct a set of egd's EP as fol-

lows. Let T = ,(TP) be an isomorphic image of Tp in which no constants appear. For every pair

of distinct constants c and d in Tp, <T,(s,(c),,(d))> is an element of I,,.

Theorem 10: p is consistent with D if and only if for no egd e E EP is it the case that D J= e.

Proof: Suppose p is consistent. Let I E WEAK(D,p). We can construct from v a homomor-

phism q with q(T)C I and for each constant c of p, u(,(c)) = c. I certainly satisfies D, but it

violates each egd in E.. Therefore no element of E. is implie by D.

For the converse, suppose there is no e E E, such that D J= e. Let EP = {e, .... e I and

el = (T,,(c),(d))>. Construct from T an atomic sentence by letting i be the conjunction of

all sentences U(t) such that t is a tuple in 7. Now consider the sentence d given by



-26-

3x(i AV(C)*(d1)A . A P(Ck)* V(dk)),

where x is a sequence of all the variables in T. We claim that D' = D U d is finitely satisfiable.

Suppose not; then D J= 'd. Now -d is a disjunctive egd of the form

V x0- 4(c)=(d)v "". vP(ck)=,(dk)).

We now rely on a finite version of a theorem of McKinsey [McK] due to Graham and Vardi [GV]

to conclude that for some 15ik, D J= V x(i-*(cI)=,(d), that is, D = e1, contradicting our

assumption that D does not imply e for any e E Ep.

Since D' is finitely satisfiable, it has a finite model M. Let s(c) be the domain element

assigned to each variable P(c) of d to make d true in M. Note that s(c)* s(d) for every cl, d

appearing in an inequality in d, so we can assume without loss of generality that s(c)=c. Then

M(U) is a weak instance for p, showing that p is consistent. 0

We now reduce the implication problem for egd's to the consistency problem. Let D be any

set of dependencies and let e = ,T,(a,b)> be an egd. We form the set Re of states of the universal

scheme {U} as follows. For each mapping r from the symbols of T to constants such that

,(a)* (b), P(T) is a member of R,.

Theorem 11: D I- e if and only if no state in R, is consistent with D.

Proof: Suppose D J= e, and let r(T) be any state in R. Clearly Y(T) violates e. Any weak

instance in WEAK(D,,(T) must satisfy D, and hence e. But P(T) would have to be a subset of such

a weak instance, which is impossible. Hence no such weak instance exists and P(T) is inconsistent

with D.

For the converse, suppose D does not imply e. Let I be any relation that satisfies D but not

e. Such a relation must contain a homomorphic image P(T) of T, such that ,(a)*v(b). Hence I is

a weak instance for &(T), which is an element of R,. 3

From the last two theorems we obtain the following immediate corollary, relating the decida-

bility of the membership problem for an egd from a set of dependencies and the docidability of

consistency under that set of dependencies.

Corollary 3: Let D be a set of dependencies. Let D, be the set of egd's implied by D. The

kllowing are equivalent.

* . *7t4 C *
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(a) D, is recursive.

(b) For every database scheme R over the universe on which D is defined, the consistency of

every state of R is decidable.

(c) The consistency of every state of the universal scheme of D is decidable.

Proof: (a) implies (b) follows from Theorem 10; (b) implies (c) is immediate (c) implies (a)

follows from Theorem 11. 3

The development of the last two theorems can be repeated to relate completeness to td impli-

cation. For the analogue to Theorem 10 construct a set of exponentially many td's, GP, from a state

p. Elements of G. are of the form <T,w>, where T is the image of Tp under an injection v to vari-

ables, and w is constructed as follows. Let R, be a relation scheme in the given database scheme,

and let I be a tuple on R, such that t consists of constants taken from p but it p(RI). Then

w[R]J=,() and the rest of w consists of distinct new variables. Informally, each element <T,w>

of G. says that a containing instance for p must contain a tuple w such that its projection on some

relation scheme is not in p. Note that G. is a set of embedded td's.

Theorem 12: p is complete with respect to D if and only if for no element g E G. is it the

case that D J= g.

Proof: If there is some g =<T,w> E GP such that D J= g, then let R be the relation scheme

that led to include g in G.. There is some tuple t constructed with values from p that does not

appear in p(R). By property (3) of D, we know that if D h g then D J= g. Let I be an element

of WEAK(D,p). Since I satisfies D, it satisfies g. Let # be a valuation such that gl(Tp) g 1. Since

T is the image of T. under an injection , and I satisfies g, I must contain some tuple whose pro-

jection on R is 1. It follows that i E fn {TR(l)}, so p is incomplete.
IEwEc(D,p)

For the converse, suppose that no g E G. is implied by D. By property (3) of D, no g E GP
is implied by D. Thus. for every g E G. there is a universal relation 1 such that I satisfies 5 but

not g. Let g = <T,w> and let I be the tuple on relation scheme R that led to the inclusion ofg in

G.. There is a valuation P, such that P(T); I and v(w[R1) , wR(I). By the multiple copies con-

struction of Theorem 2, we can assume that , is injective. Thus we can assume without loss of gen-

* erality that IS E WEAK(D,p), and i f wR (I). It follows that t ( p+(R). Since this is true for every

tuple t constructed from values in p but not itself in p(R), t follows that p is complete. 0

For the analogue of Theorem 11, let D be a set of dependencies and g = <T,w> a td. We

may assume wiT, else g is trivial. Let U be the relation scheme of DUg, let

*nay asum -- Dp**'~**g, ..
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R = {A I w[A! occurs in T1. and let R = {U,R }. Let r be an injection from variables of T to con-

slts. Let S be the set of all relations on U constructed from values in P(T) that contain r(T).

Let K be the set of all states of the form wn(r), where r E S and wRt (r) does not contain v(w).

Theorem 13: D J= g if and only if every state of K is incomplete.

Proof: Again the proof parallels that of Theorem 11. If D J= g, then the completion aI of a

for each a E K is such that r(wXR ] E a+(R), but ,(w)I a(R), hence every such a is incomplete.

Conversely, if D does not imply g, let ! be a relation on U that satisfies D but not g. I is a

weak instance for the state a = w(J) in K. Since e is exactly the projection of one of its weak

inmces, it must be complete. o

Corolar 4: Let D, be the set of all td's implied by a set of dependencies D. D, is recursive

if and only if completeness of any state of any database scheme over the attributes of D is decid-

able.o

We now state the main result of this section, which is a corollary of the four theorems above.

Theorem 14: There does not exist an algorithm which will determine for every pair <Dp>

whether p is consistent nor whether p is complete with respect to D.

Proof: The implication problem of egd's from arbitrary dependencies was shown undecidable

by Vardi [Val. Implication of td's was shown undecidable by Vardi [Va3] and Gurevich and Lewis

[OLI. o

Since no general algorithms exist for deciding either completeness or consistency, we become

interested in solvable subcases. If implication is decidable for D, for example, if D contains only

full dependencies, consistency and completeness are decidable, as shown in the previous section.

but there may be specific database schemes for which consistency and completeness are decidable,

even if implication is not. However, there is no algorithm that will decide, given a database scheme

and a set of dependencies, whether consistency and completencss are decidable for that scheme and

those dependencies.

Theorem 15: The set A = {<D,R> I consistency and completeness of states of R with respect

to D are decidable ) is not recursive.

Proof: Vardi [Va2J showed that it is undecidable whether the implication problem for a set

of dependencies D is decidable or not. Suppose A were recursive. For a fixed set of dependencies

D, the predicate of tie dependencies has a fixed arity, that is, a fixed set of attributes. There are

only finitely many database schemes over this set of attributes. As implication is decidable for D if

- - av-- .. , -cr . C '. ,.r, -,r -2,'.,% . ' . - -.- -,,~ t<t . % .. - -',* .4k.%.,M .. -
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and only if <D,RI E A for each of these finitely many R's, an algorithm for membership in A

would yield an algorithm to test decidability of the implication problem. So A cannot be recursive.

0

6. Discarding the Universal Relation Scheme

The sentences in C. and K. use a predicate letter corresponding to the universal relation

scheme for the database. It is interesting to ask whether we can construct a theory with properties

similar to Theorems 4 and 5, but using only predicate symbols R 1, .... R, of the same arities and

sorts as the relation schemes, thus avoiding the universal predicate. This amounts to asking

whether dependency satisfaction can be expressed in a "local" way, without having to resort to the

existence of a universal relation.

There is a special case, the independent schemes, when the question can clearly be answered

in the affirmative. Given a set of dependencies D on a database scheme {R1. ... , RN}, the pro-

jected dependencies Di are all the dependencies that must hold in any relation r, on Ri such that

ri = wi(r), where r is a universal relation satisfying D. A state p is called locally satisfying if every

p(Ri) satisfies Di. A database scheme is said to be independent if every locally satisfying state is

consistent with D. When the database scheme is independent, we can write down the required set

of sentences by expressing each dependency in the context of some R5. For special cases such as

functional and multivalued dependencies, projected dependencies can be easily characterized in

terms of the original set D, although finding the DI's is computationally hard [H]. For more general

classes of dependencies, we do not even know if the Di's are finite. In the general case, the results

in this section should be viewed as existence proofs for the desired sets of sentences, rather than

effective constructions.

Our main result in this section is that in fact it is possible to construct a set of sentences with

the desired properties when the database scheme is weakly cover embedding. To define this notion,

note that the projected dependencies D, can be viewed as embedded dependencies on U. For Di

defined on Ri, we say a relation on U satisfies D, if 'wR() does. We say that a database scheme R

weakly cover embeds a set of dependencies D if any state of R consistent with J D, is consistent
1=1

with D. In the framework of Section 4. in a weakly cover embedding scheme it suffices to chase

using only dependencies local to some relation scheme of R.

-. *- , **,Wa. * .~ * , . * . .



.- 30-

It is easy to see that the class of weakly cover embedding schemes contains both the cover

embedding or dependency preserving schemes [MMSU] and the independent schemes. Since, for

cover embedding schemes, we have IJ D, 1= D, such schemes are weakly cover embedding. Since

any state consistent with J i is locally consistent, the independent schemes are weakly cover
1=1

embedding. A polynomial time algorithm for testing whether a weakly cover embedding database

scheme is independent, in the case where all dependencies are fd's, is given in [GY]. Even for this

retricted case, no algorithm to test whether a scheme is weakly cover embedding is known.

Given a state p of a weakly cover embedding database scheme, we construct a new set of sen-

tences B. as follows. The language of B, is the same as the language of A., except that we do not

use the universal predicate letter U. B. contains four kinds of sentences.

* State axioms: for each Ri and each tuple IEp(RI), the sentence Ri(t).

• Join-consistency axioms: for each R, in the database scheme, B. contains the sentence

Y x(R.x)-w( 1b ... b)XRI(vl)A' AR1 (V,)))

where vi =x and the v's are constructed frm values in x and the b's so that for all

1<p,q5n, if the jth attribute of R. is the kth attribute of Rq, then vpji]=vq[k]. Intui-

tively, the join-consistency axioms, together with the state containment axioms, assert the

existence of a join-consistent state that contains p.

e Dependencies: for each i, the set of dependencies Di can be rewritten as a set of first order

sentences on RI.

e Distinctness axioms: as before, these assert that all constants are distinct.

Example 5: We construct B,, for the state of Examples 1 and 4. The universe is

U = {S,C,R,H}, the relation schemes R, = SC, R2 = CRH, R3 = SRH, and the dependencies

SH-*R, RH-*C. The projected dependencies are: D1 =0, D2= {RH-Cl}, D3= {SH-R }.

State axioms:

R1(Jack,CS378)

RA(CS378,B215,M 1O)

R(CS378,B213, WIO)

:, U - ,- - , ,-, -# % 'V ' - ? *, ,,- - *- - -'\ . .- ,, -' ,~;.. %,. **. *,.* ,. ,.,- ,-... .- -,-,- -. . ,-
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R(Jack,B215,M1O)

Join-consistency axioms:

(VXIXR (XIXI)--*(3 blbA)R 2X 2blb2)/ R 3(x lblb2)))

(YXIX 2X3XR2(XIX2X3)-*(3 bXRI(blxi)AR 3(blx2x 3)))

(YxIx 2xXR 3(xlx2x3)-.t(J b1XR 1(x1b1)AR 2(bIxx 3)))

Dependencies:

(Yrlhlclc2)(R  clrlhl)V\R 2( 2rhl)-cl= c2)

(Yslrlr2hXR 3(slrlhl)AR 3(slr2h1)-* rl = r2)

Distinctness axions:

B215*B213

M10 w WiG

etc.

Theorem 16: For a weakly cover embedding database scheme, B. is finitely satisfiable if and

only if p is consistent with D.

Proof: (I) Suppose p is consistent, and let IEwr.AK(D,p). Let r =wR(I) for each i. Con-

sider the interpretation for BP where each constant is mapppcd to itself and Ri is interpreted as r,

for each i By definition of projected dependencies, each r satisfies D1. Since I is a containing

instance for p, the r's satisfy the state containment axioms. Finally, the ri's are join-consistent by

construction and thus satis* the join-consistency axioms. It follows that we have a finite model for

Bp,.

* •(Only il) Suppose B is finitely satisfiable. Proceeding as in Theorem 1, we can assume that

there is a database state p' that satisfies Bp. That is, p' contains p, is join consistent, and p'(R,)

satisfies D, for each i. Let I be a universal relation such that w(1)= p'. Clearly I satisfies the
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Di's, so IEWEAK(U Di,p'), showing that p' is consistent with U Di. Since R is weakly cover
i i

embedding, p' is also consistent with D. Since pC_p', WEAK(D,p') CWEAK(D,p), so p is consistent

with D. 0

The following example shows that the construction above does not generalize to non-cover

embedding schemes; we leave open the question of whether such a set of sentences can be con-

structed at all for arbitrary schemes.

Example 6: Let R={AC,BC}, D ={AB-.C,C-*B}, p(AC)={(0>,(02>},

p(BC)=[{31>,(32>}. Note that D1 =0, D2={C-B}. It is easy to see that p is consistent with

DIU D2, but not consistent with D. However, BP is consistent in this example, since p is a join-
consistent state that satisfies the local dependencies and hence provides a model for BP.

7. Discussion

We have pointed out that there are two separate sides to the standard notion of dependency

satisfaction: consistency and completeness. We view consistency as corresponding to a "lazy evalua-

tion" tactic for constraint maintenance. As long as no violations can be proven, the state is con-

sidered legal. The derived tuples not present in the state can be generated on demand, for purposes

such as query answering. Note the similarity of this policy to the "deductive databases" approach

IGMJ, where any fact deducible from the stored relations is considered part of the database.

Requiring both consistency and completeness corresponds to a constraint maintenance policy that

guarantees that all derived tuples will be present in the database at all times. There is a storage-

computation tradeoff in the choice of a policy. This tradeoff applies not only to multi-relation data-

bases but also to single relations. Consistency of a relation under a set of, say, fd's and mvd's, is

strictly weaker than standard satisfaction.

. The combination of our notions of satisfaction with the concept of independence leads to

interesting questions. For example, what are the database schemes such that every locally consistent

state is consistent and complete? Chan and Mendelzon [CM) have characterized these schemes

when the join dependency for the database scheme and a set of functional dependencies are given.

' '* , , :€ , , ... ' "''."-,: " " " • ' :' ,," . 'i '"; ;' .-.' - .. - .... . .-.-.. . -.- .-.
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